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Abstract  –  A two-way tactile communication system 
incorporating oral-based tactile modes is developed.  The 
prototype system allows the user to both receive navigation 
cues, via a microfabricated flexible electrotactile palate 
display, and transmit information to the outside 
environment using a tongue operated device (TOD).  The 
palate display consists of a flexible electrocutaneous-mode 
7x7 electrode array for stimulating the palate.  The TOD has 
four switches laid out in the cardinal directions with a fifth 
switch in the center.  An oral-based tactile interface is 
realized by integrating the palate display and the TOD using 
a dental palate mold made from a silicone impression 
material.  The system is programmed to test and simulate 
navigational guidance via two-way tactile communication.  
Preliminary human subject tests have been performed.  
Results indicate TOD force requirements influence 
performance, but adequate performance can be achieved 
within a relatively large range of input forces (one order of 
magnitude).  
Keywords – electrocutaneous, oral, palate, switch, tactile, 
tongue. 
 
 

I.  INTRODUCTION 
 
 Research on tactile devices as a mode of 
communication has recently increased in the past several 
years.  Much of the work has been focused on 
implementing devices to aid the visually impaired in 
understanding graphical user interfaces (GUIs) commonly 
found on computers.  Prior work has been directed 
towards converting text into sound, enabling the 
individuals to access and understand written text.  
However, such a system is futile to people with auditory 
impairments, or those possessing both visual and auditory 
impairments.  The development of tactile displays capable 
of displaying textual and graphical information would 
allow access to advanced computers, reading, and 
navigation [1, 2, 3].  In addition, the transmission of 
information via the tactile sensory would establish a 
hands-free system with minimal disturbance to the 
surrounding environment and could reduce sensory 
overload [4]. 
 

Recently, tactile displays have been designed to send 
information to a person via the tactile sense through 
various modes of stimulations – electrostatic, 
electrocutaneous (EC), and vibrotactile.  Systems such as 
the OptaconTM are designed for the fingertip, while other 
tactile displays target relatively larger and flatter parts of 

the body, e.g., the abdomen and the back [5, 6].  
However, there are several limitations with such displays 
as they are relatively bulky and, power hungry, while the 
density of the cutaneous sensors on these regions of the 
body is comparatively low. 
 

The tissues of the oral cavity are some of the most 
sensitive in the body, and preliminary studies of its 
potential as a stimulation site are encouraging [4, 7, 8].  
Oral structures possess a cortical mapping similar in size 
to that of the hands, while the entire trunk and lower half 
of the human body have fairly small mapping in the 
somatic sensory cortex [9].  Taking advantage of this 
superior sensitivity, applications for an oral-tactile 
interface to assist individuals with vestibular dysfunction,  
quadriplegia, and navigational guidance, e.g., scuba 
divers, look promising.  With the aid of advancements in 
microfabrication, a tactile device may be placed within 
the oral cavity, providing a novel approach for sensory 
augmentation, communication, and human-computer 
interface.  However, the oral cavity does present 
challenges – it is not readily accessible and possesses few 
large flat areas for stimulation [4]. 
 

Several companies have recognized the potential 
merits of tongue-based devices, such as NewAbilities 
Systems’ tongue touch keypad (TTK) (Mountain View, 
CA), and IBM’s Tonguepoint prototype [10].  Though, 
innovative, they are only capable of communicating in 
one direction, i.e., sending information from the user to 
the outside world.  Our preliminary work on a two-way 
communication tool was encouraging [4], and highlighted  
several areas where improvement was necessary.  In this 
paper, we demonstrate an oral-based tactile interface that 
affords two-way communication and  addresses some of 

Fig. 1. Oral tactile interface with both input 
and output capabilities. 
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the deficiencies of the previous device.  The focus of our 
preliminary tests are on the TOD to investigate its 
integration with the palate display, and to assess its  
functionality and design.  The oral interface concept and a 
prototype device are illustrated in Fig, 1 and Fig. 2, 
respectively.  
 
 

II.  INTERFACE IMPLEMENTATION 
 

Our ultimate goal is to develop a self-contained 
device that affords a discrete hands, vision, and audition-
free communication system for two-way communication 
via wireless technology.  To that end, we have developed 
a prototype oral-based tactile interface consisting of a 
dental palate mold that includes the flexible electrode 
array for palate stimulation, and a five-switch tongue 
operated device (TOD).  Fig. 1 presents the oral tactile 
interface between the user and the outside world.  The 
user receives information via the EC palate array by 
sensing and recognizing dynamic tactile patterns (e.g., 
lines, shapes, arrows, etc.).  The user can also 
simultaneously  send a message by depressing one of the 
switches on the TOD. 
 
 The tongue is well suited to operate the TOD because 
of its mobility and tactile sensitivity.  Similarly, the palate 
is used for the EC stimulation since it is relatively flat and 
large, sensitive to low-intensity tactile stimulation, and 
the array can be in constant contact with it.  Such a design 
would allow simultaneous operation of both input/output 
devices.  Fig. 2 shows the current version of the interface 
and its placement within the oral cavity. 
 
A. Palate Display 
 

Using microelectronics fabrication techniques and 
processes, the flexible palate array fabricated is a multi-
layered polyimide-based display consisting of a 7 × 7 
matrix of dome-shaped electrodes, each approximately 
200 µm high and 700 µm in diameter.  The array, as 
shown in Fig. 3, is fabricated with thin-film technology 
and a subsequent nickel electroplating process [11].  The 
bright dots are the dome-shaped electrodes with the traces 
serving as  interconnections between the array and the 
control circuitry.  Overall dimensions of the array are 18.5 
× 18.5 mm2, with a center-to-center electrode spacing of 
2.54 mm.  Thin-film technology processing allows the 
development of a flexible display that will conform to the 
roof of the mouth.  In addition, the dome-shaped 
electrodes theoretically provide a more uniform current 
distribution that also increases its surface area for EC 
stimulation, improving the dynamic range of current 
stimulation, and the quality of the tactile perception by the 
user by decreasing the localized current density [4]. 
 
B. Tongue-operated Device (TOD) 
 

We have fabricated tongue switches that are directly 
hardwired using printed circuit board (PCB) kits from 
Kepro Circuit Systems, Inc. (St. Louis, MO).  The five 
switches were laid out using AutoCAD in a cardinal 
direction, with the fifth switch in the center.  The pattern 
was transferred to the PCB by photoresist development, 
and a subsequent copper etching process. TODs were 
fabricated and machined to include a small paddle to 
allow the user to manipulate the interface to the best 
position in the oral cavity.  Several configurations of the 
spacing layer thickness (3M double-sided adhesive, St. 
Paul, MN), metallized Mylar thickness (Dupont), and size 
of spheres (switch location ‘nibs’) were tested in 
preliminary human subject experiments (see Fig. 4).  
Depressing the ‘nib’ that lies on top of the metallized 
Mylar film shorts the interdigitated leads on the ‘PCB 
electrode’, thereby closing and completing the direction-
specific circuit.  The ability of the user to depress the 
tongue switches was observed to determine the optimal 
configuration (both geometric and force required).  
 
C. Integration of the Palate Display and TOD 
  

The oral-based tactile interface is realized by 
integrating the palate display and the TOD using a dental 
palate mold, as shown in Fig. 2.  The dental palate mold is 

Fig. 2.  The actual oral-based tactile interface with the 7 × 7 palate 
array on top, and the TOD on the bottom of the dental palate mold.

Fig. 3.  A polyimide-based flexible palate array wrapped around a cylinder 
of approximately 26 mm in diameter. 
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Fig. 4.  Cross-section of one of the switches of the TOD. 
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Fig. 5.  System configuration for a two-way 
communication interface. 

made from a silicone impression material (CutterSil Putty 
Plus, Heraeus Kulzer, Inc., South Bend, IN).  Various 
combinations of the mold and hardener were attempted 
until a pliable, yet supportive mold was fabricated.  The 
palate array is mounted on top of the palate mold to 
ensure contact with the anterior portion of the roof of the 
mouth, while the TOD is mounted on the bottom-side of 
the dental palate mold using 3M Super Glue gel (St. Paul, 
MN).  This configuration allows simultaneous use of the 
palate display and the TOD.  Both the palate display and 
the TOD are connected to the outside circuitry via flexible 
cables [4]. 
 
 

III. SIMULATION CONFIGURATION 
 

To demonstrate and characterize the performance of 
the two-way tactile communication system, a computer-
controlled system was implemented to interact with both 
the palate display and the TOD.  The computer system 
controls the presentation of tactile patterns and interprets 
the signals from the TOD in real time.  The simulation 
environment from previous research [4] is modified such 
that it can control the palate display and receive input 
from the TOD, as opposed to the TTK. 
 
A. Hardware Configuration 
 
 The oral components (palate display and TOD) are 
integrated with the associated hardware to create a 
computer-controlled system as shown in Fig. 5.  The 
palate display is connected to the Tongue Display Unit 
(TDU – ver. 1.1, Wicab, Inc, Madison, WI) through two 
40-pin IDC cables.  The TDU is a programmable tactile 
pattern generator with tunable stimulation parameters for 
each electrode via a standard RS-232C serial link to a PC.  
The TOD is connected to National Instruments DAQPad-
6508 (Austin, TX), an external data acquisition device, 
via a USB communication port. 
 
B. Software Configuration 
 

The simulation program presents four square path 
lines for the user to navigate through, using one of the 
switches on the TOD (see Fig. 6).  When the simulation 
environment sends the directional message pattern using 

EC stimulation to the subject through the palate display, 
the subject depresses the corresponding switch on the 
TOD as a navigational guidance response.  The program 
detects the depressed switch and moves the ball in the 
corresponding direction.  Fig. 6 depicts the simulation 
environment and the ball navigation by the subject.  The 
detailed implementation of geospatial cues is described in 
prior research work [4]. 
 
 

IV. EVALUATION AND RESULTS 
 

Psychophysical studies have previously been 
conducted on the palate display, to determine sensory 
thresholds, and to identify optimal geospatial cues [4].  In 
that work, it was determined that the direction of pattern 
motion was the primary navigational cue, whereas the 
specific pattern shape was not significant.  However, no 
formal subject testing was conducted on the operation of 
the output device used in that study.  Thus, the aim of our  
preliminary tests are on the TOD to assess its  
functionality and design. 
 
 The tests were performed on three adult human 
subjects over two trial sessions.  To simplify the task, 
only four switches (one in each of the cardinal directions) 
were used during the operational testing of the TOD.  The 
subjects were instructed to use the TOD to traverse a 
straight path across the computer screen between the two 
target areas (at the end of each path line) as shown in Fig. 
6.  The rate of movement was kept at a constant two 
pixels/activation of the TOD.  The time it takes the 
subject to reach each target area can be used as an indirect 
indicator of the effectiveness of the TOD switches, as 
well as the feasibility of the two-way oral-based interface.  
Subject performance data and analysis is shown in Fig. 7.  
Data for movement in the ‘right’ direction is not available 
due to device failure as subjects attested that it was too 
difficult to activate the switch and could not complete the 
path.  Subject feedback on comfort, functionality, and 
feasibility of accessing and depressing all switches was 
recorded and is discussed in the following section.  
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Fig. 6.  TOD simulation environment.  (a)  Depressing the ‘left’ 
switch, the ball is directed from ‘Target 0’ to ‘Target 1’.  (b)  

Depressing the ‘up’ and ‘right’ switch, the ball continues to navigate 
around the square path. 
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V. DISCUSSION 

 
Our preliminary tests of the operation and 

functionality of the TOD showed subjects were able to 
manipulate the device and direct the ball around the 
square path.  Subjects could easily activate the ‘up’ and 
‘down’ switches, as demonstrated by the traversal times, 
but reported difficulty in activating the ‘left’ and ‘right’ 
switches, which is exhibited in the incomplete 
performance times under this condition (see Fig. 7). 
 

Subsequently, a load cell was used to determine the 
minimum amount of force needed to activate each switch 
on the TODs.  The ratio of the forces is shown in Table 1.  
It is reasonable to assert that the discrepancy between 
activating the ‘up/down’ and ‘left/right’ switches is 
contributed to the differences in the subject performance 
in the tests.  It is also interesting to note the range of 
forces the tongue can operate over, and specifically that 
the ‘up/down’ switches required more than an order of 
magnitude difference in force.  Nonetheless, subjects 
were able to adapt to the different force requirements and 
operate the device successfully.  At the same time, the 
‘left/right’  switches, on average, required more force (as 
much as 20 times the minimum), and subjects had great 
difficulty spanning this range of force.  Subsequent device 
fabrication must include uniform (Mylar) membrane 
tension, air channels to alleviate differences in air 
pressure at each switch, and an increase in the accuracy of 
the amount of epoxy deposited on top of the switches to 
better control the uniformity and absolute magnitude of 
the forces required to activate the switches. 
 

TABLE 1 
RATIO OF FORCES REQUIRED TO ACTIVATE SWITCHES ON THE TODS 

 

 LEFT UP RIGHT DOWN 
1 3.0 1.4 3.0 1.0 
2 3.0 1.2 3.0 3.8 
3 2.0 0.3 6.0 1.4 

 
 

VI. CONCLUSION 
 

Preliminary tests on the implementation of a two-way 
active and passive oral-based tactile device have been 
presented.  Prior work has already confirmed that the roof 
of the mouth is an excellent site for tactile presentation 
[4].  We have shown here, using the TOD, that it is also 
possible for the subject to send simple geospatial cues to 
the outside world using the tongue.  The results from this 
and the previous study dictate that future work includes 
the investigation of modifying both the TOD to increase 
its functionality, and the palate display to improve tactile 
pattern perception and the quality of the EC sensation. 
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Fig. 7.  The lap time taken by each subject to move 
the ball in each intended direction. 
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